skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ganesan, A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Interactions of N2 at oxide surfaces are important for understanding electrocatalytic nitrogen reduction reaction (NRR) mechanisms. Interactions of N2 at the polycrystalline vanadium oxide/vapor interface were monitored at room temperature and total pressures up to 10−1 Torr using Near-Ambient Pressure X-ray Photoelectron Spectroscopy (NAP-XPS). The oxide film was predominantly V(IV), with V(III) and V(V) components. XPS spectra were acquired in environments of both pure N2 and equal pressures of N2 and H2O vapor. In pure N2, broad, partially resolved N1s features were observed at binding energies of 401.0 and 398.7 eV, with a relative intensity of ∼3:1, respectively. These features remained upon subsequent pumpdown to 10−9 Torr. The observed maximum N surface coverage was ∼1.5 × 1013 cm−2—a fraction of a monolayer. In the presence of equal pressures of H2O, the adsorbed N intensity at 10−1 Torr is ∼25% of that observed in the absence of H2O. The formation of molecularly adsorbed H2O was also observed. Density functional theory-based calculations suggest favorable absorption energies for N2 bonding to both V(IV) and V(III) cation sites but less so for V(V) sites. Hartree–Fock-based cluster calculations for N2–V end-on adsorption show that experimental XPS doublet features are consistent with the calculated shake-up and normal, final ionic configurations for N2 end-on bonding to V(III) sites but not V(IV) sites. The XPS spectra of vanadium oxide transferred in situ between electrochemical and UHV environments indicate that the oxide surfaces studied here are stable upon exposure to the electrolyte under NRR-relevant conditions. 
    more » « less
  2. We introduce consistency-aware durability or CAD, a new approach to durability in distributed storage that enables strong consistency while delivering high performance. We demonstrate the efficacy of this approach by designing cross-client monotonic reads, a novel and strong consistency property that provides monotonic reads across failures and sessions in leader-based systems. We build ORCA, a modified version of ZooKeeper that implements CAD and cross-client mono- tonic reads. We experimentally show that ORCA provides strong consistency while closely matching the performance of weakly consistent ZooKeeper. Compared to strongly consistent ZooKeeper, ORCA provides significantly higher through- put (1.8 – 3.3x), and notably reduces latency, sometimes by an order of magnitude in geo-distributed settings. 
    more » « less